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Abstract. Two-dimensional quasiperiodic tilings (QFT) obtained from n grids are classified 
into local isomorphism ( L I )  classes by using the invariants of the grids. The number of 
the invariants is given by n - +( n )  if n is odd or n - 4 ( 2 n )  if n is even, where d~ is Euler's 
function in number theory. All the QPT obtained from n grids with n = 2 k  ( k  2 2) belong 
to a single LI class, whose point symmetry is D2". When n is not a power of 2, the QPT 

are classified into several LI classes. Of the LI classes, two have the highest point symmetry, 
D2,, ; one of the two classes is associated with n grids in which all the invariants vanish 
and the other with n grids in which all of them take f. In the case of an odd n, there is 
also one continuous series of QPT with point symmetry D,. We present also a general 
formula of the tile statistics of the quasiperiodic tilings obtained with the grid method. 

1. Introduction 

Two-dimensional quasiperiodic tilings (QPT) are of current interest in connection with 
quasi-two-dimensional quasicrystals, e.g. an octagonal one (Wang er al 1987), 
decagonal ones (Bendersky 1985, Fung er al 1986) and dodecagonal ones (Ishimasa 
er al 1985, Kuo 1987). 

A simple method of obtaining an n-gonal (or 2n-gonal) QPT of a plane ( n  3 5 )  is 
to construct it as the dual lattice of an n grid (de Bruijn 1981, Levine and Steinhardt 
1986); an n grid, G,, is the union, Gk0' U GY) U . .  .U G!,"-", of simple grids, G',), with 
G'," = G!,"( y l )  = {x 1 x E E ,  ; e, - x + y, = k E Z } ,  where E ,  is the two-dimensional 
Euclidean space (a  two-dimensional real vector space), e, = (cos io, sin io )  with 6 = 
2 r / n  for odd n (or r l n  for even n )  and the y I  are constants. The grid vectors 
e,, e , ,  . . . , en-, point the vertices of a regular n-gon (or a half the vertices of a regular 
2n-gon for even n ) .  A crossing point between two grid lines belonging to G'," and 
G!) (j > i) yields a rhombic tile whose sides are parallel to e, or e, ; the four inner 
angles of the rhombus are given by (j- i )e  or its supplementary angle. The acute 
inner angles of a rhombic tile in the tiling have the form k r / n  in which k takes 
1 ,2 , .  . . , [n/2]; the number of different kinds of rhombi is given by n/2. We shall 
denote by Tk the rhombic tile whose acute inner angles are equal to k r /n .  It is well 
known that the QPT obtained from an n grid are obtained, alternatively, with the 
projection method from a simple hypercubic lattice in n dimensions (de Bruijn 1981, 
Gahler and Rhyner 1986, Katz and Duneau 1986, Ishihara 1987, Ishihara er al 1988). 
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The case n = 4 gives an octagonal QFT known as Ammann tiling (Grunbaum and 
Shephard 1986) and the case n = 6 gives two local isomorphism classes ( L I  classes) of 
dodecagonal QPT (Ishihara 1987, Ishihara et al 1988, Niizeki 1988). The most familiar 
case, n = 5 ,  gives Penrose tiling (de Bruijn 1981) and its generalised versions (Pavlovitch 
and KlCman 1987). The original Penrose tiling is obtained only when y =  
yo + y1 + y2 + y, + y4 = 0 mod 2. This tiling has a decagonal macroscopic point sym- 
metry represented by D,,, the dihedral group of order 20. On the other hand, the 
symmetries of the generalised Penrose tilings have not yet, to the author's knowledge, 
been completely established (see, however, the end of § 8). 

The investigation of the cases n = 7, 8 and 9 is only at a rudimentary stage. The 
purpose of the present paper is to report a complete result on classification of the QPT 

obtained with the grid method. 
We will develop our argument in earlier sections by concentrating on the case of 

an odd-n grid; the case of an even-n grid will be discussed in § 6.2. In § 2 we investigate 
linear dependence among the grid vectors and their transformation properties under 
a symmetry operation. We enumerate the invariant(s) of an odd-n grid in § 3. We 
classify nonagrids in 0 4 on the basis of symmetry considerations. We classify QPT 

obtained from nonagrids into LI classes in P 5 .  In 9 6, we extend the results of 00 4 
and 5 to general cases. We present in § 7 a general formula of the tile statistics of a 
QPT obtained with the grid method. We discuss in 9 8 related subjects, especially the 
role of the invariants of an n grid in the projection method which is a complementary 
method to the grid method. 

2. Linear dependence among the grid vectors and their transformation properties 

2.1. Linear dependence 

We can identify E2 with the complex plane and a vector in E2 with the corresponding 
complex number. Then, grid vectors, e,, e , ,  . . . , e,,-l, of an odd-n grid are identified 
with complex numbers, 1, l, 12, . . . , ln-l, with 5 = exp(2ri/n).  These complex numbers 
are not, however, linearly independent over Q, the field of real rational numbers, nor, 
accordingly, over 2, the integral domain of integers. A simple relationship is 
1 + 5 +. . . + l"-' = 0. If n is equal to 5 ,  7 or any other prime number, there are no 
other independent relationships representing linear dependence among the 5' over 2. 
Therefore, n - 1 of the n-grid vectors are linearly independent over 2 for these cases. 

On the other hand, we have three independent linear relationships for the case of 
n =9,  i.e. 1+13+16=0,  l + F 4 + 1 7 = 0  and 1 2 + 1 5 + f 8 = 0 ;  the relationship l + l + .  . .+ 
la=  0 follows from the other three. In fact, the latter two among the three follow the 
first as algebraic relationships. The first relationship originates in the fact that the 
cyclic group C9 = { 1, l ,  . . . , 18} has C, = { 1, 13, 16} as a subgroup. The index of C, in 
C9 is three and the three linear relationships among the li correspond to the three 
cosets, C3, gC3 and 12C3.  It is important that the three linear relationships form a 
'basis set' of linear relationships; any linear relationship among the 5' over 2 can be 
represented as a linear combination of the three with integer coefficients. It follows 
that only six of the the nine grid vectors are linearly independent over 2. 

For a general n, we obtain by using number theory (for number theoretical points 
in this paper, see Hardy and Wright (1979)) that the number of linearly independent 
grid vectors over 2 is given by m = +( n )  where 4 is Euler's function. Then the number 
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of independent linear relationships among the n-grid vectors is given by I =  n - m .  
Note that m is even but 1 is odd. 

If the grid vectors are represented by the l', we can take as the linear relationships 
the equations s'P,,(C) = 0, i = 0, 1, . . . , 1 - 1, where P , ( x )  = a,+ a , x  + . . . am-l + 
x m ,  with the a, being integers (a,= l ) ,  is the n-cyclotomic polynomial. These linear 
relationships form a basis set. It follows that 1, 6, .  . . , lm-I are linearly independent 
over z and that 5' with j 3 m is represented by a linear combination with integer 
coefficients of 1, 5 , .  . . , I"'-'. We should remark that the number, I, is considered, 
alternatively, to represent the degree of degeneracies in the set of the grid vectors. 

X m - l  

2.2. Transformation properties among the grid vectors 

Let r, be a rotation of the plane by  2 7 ~ / n .  Then the grid vectors are transformed 
cyclically as r,ei = e i + , ,  i = 0, 1, . . . , n - 1, with e, e,. Thus r, is represented by an 
n-dimensional cyclic-permutational matrix, which is a unimodular matrix. The charac- 
teristic equation of the matrix is given by x n  - 1. On the other hand, the first m-grid 
vectors are transformed linearly among themselves by r, .  More exactly, we obtain 
r,e, = eit1, i = 0, 1, . . . , m - 2 ,  and r,,em-l = -aOeo- alel  -. . . - -am-,em-,  , where the a, 
are the coefficients of the polynomial P , ( x ) .  Thus r, is also represented by an 
m-dimensional unimodular matrix. The n-cyclotomic polynomial is nothing but the 
characteristic polynomial of this matrix. This is an irreducible unimodular matrix 
because P , ( x )  is irreducible over 2. In fact, this m-dimensional representation is an 
irreducible component of the above mentioned n-dimensional one; X "  - 1 is factorised 
as P , ( x ) Q , ( x )  where Qn(x)= c o + c , x + .  . . + c , - , x ' - ' + x ' ,  with the ci being integers, is 
a polynomial, which we shall call the complementary n-cyclotomic polynomial. Note 
that c, = -1 and c, = 1. Note also that c1 + c 2 + .  . .+ c, = 1 because Qn(l) = 0. It is well 
known that Q,(x) is factorised into cyclotomic polynomials of lower orders; 

where the multiplication is restricted to other divisors of n than n itself. Q,(x) takes 
a simple form when n = p k  with p being an odd prime number, i.e., Q,(x) = x'  - 1 with 
1 = p k - ' .  

3. The invariants of odd-n grids 

The grid parameter y ,  in the simple grid G!,') ( y l )  specifies a relative positional 
relationship of the grid to the origin of E*.  If the simple grid is translated by a vector 
r, y ,  changes as +', = y z  - e ,  * 2. Obviously, an n grid and its translated version give an 
identical QPT except for a translation. On the other hand, since the y I  are determined 
modulo 2, there is a one-to-one correspondence between the set of all the n grids and 
the n-dimensional torus, T" = R " / Z " .  

Let moeo+ mle l  +. . . + m f l - , e n - ,  = 0 be a linear relationship among the grid vectors 
over 2. Then y = m,y,+ m ,  y ,  +. . . + m n - , y n - ,  is invariant against any translation of 
the n grid. We can assume without loss of generality that the m, are relative primes, 
i.e. they have no non-trivial common divisors. Then y is determined modulo 2 and 
we can assume that -$< y S 4 .  In the case where we have several invariants, the n 
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grid is classified by the values of the invariants y,  y ' ,  . . . , y"-" which are associated 
with the basis set of the linear relationships, l1Pn(l) = 0, i = 0, 1, . . . , 1 - 1. We shall 
denote by G , [ y ,  y ' ,  . . . , y"-I'] the family of n grids whose invariants take common 
values specified by y,  y ' ,  . . . , y"-". 

are 
related to y o ,  y l , .  . . , Y , , , - ~  by 

If the values of the 1 invariants are fixed, grid parameters y m ,  y m t l ,  . . . , 

" - 1  

YI = c k,Y, + 4 i = m, m + 1, . . . , n - 1 (2) 
J = o  

where the k ,  are integers and the 8, are constants depending linearly on the values of 
the invariants. Hence, there is a one-to-one correspondence between the set of all the 
n grids in G , [ y ,  y ' ,  . . . , y"-"] and the m-dimensional torus T". Moreover, from the 
fact that the k, in (2) are integers, we can conclude that T" is a closed submanifold 
of T", which represents the set of all the n grids. 

Two QPT belong to the same local isomorphism ( L I )  class or translational LI class 
if and only if any portion of one of the two can be completely superposed onto a 
portion of the other by a congruence transformation or a simple translation, respectively, 
and vice versa; a congruence transformation is a combined transformation of a transla- 
tion, a rotation and/or a reflection. 

If two QPT obtained from two n grids belong to the same translational LI  class, 
there must be translations of the grid of one QPT which are arbitrarily close to the grid 
of the other one (and vice versa) so that the two grids must have the same invariants 
and thus belong to the same family, G , [ y ,  y ' ,  . . . , y"-"] .  Conversely, all the QPT 

obtained from n grids in G , [ y ,  Y ' ,  . . . , yc'-l)l are shown to belong to a common 
translational LI  class. A proof of this proposition is presented in appendix 1. Thus, 
there exists a one-to-one correspondence between the set of all the translational LI  

classes of QPT obtained from n grids and the I-dimensional torus, TI = T"/  T". 
Since a simple grid G!,')( y t )  is transformed by r, into G!,'+IJ( y , ) ,  the grid parameters 

y I  are transformed by r, as r,y, = y I - l ,  i = 0, 1, . . . , n - 1 ,  with y - l  = y n - ,  . The invariants 
are linear forms with respect to the grid vectors and are transformed by r, too. The 
transformed linear forms are, obviously, also invariants. Therefore, the set of 1 
invariants, y ,  y' ,  . . . , y"-", form a unimodular representation of the cyclic group C, 
generated by r, ; C, -- { 1, 5, . . . , ["-'}. 

4. A classification of nonagrids 

Prior to investigating the classification problem of n grids for a general n, we investigate 
the case of nonagrids. In this case, we have three invariants y ,  y' and y" corresponding 
to the three cosets C3, (C, and 5*C3, respectively. It follows that r9(y ,  y' ,  y " )  = 
( y", y ,  y ' ) .  Accordingly, QPT obtained from nonagrids in G,[ y ,  y ' ,  y " ]  has a macro- 
scopic nonagonal point symmetry if y = y' = y". Otherwise, they have a trigonal point 
symmetry because r3( = r:)  leaves y ,  y' and y" invariant. The trigonal symmetry is a 
crystallographic point symmetry and we do not have much interest in this case. 
Therefore, we will restrict our arguments to the nonagonal QPT, i.e. the case where 
y = y' = y".  We shall denote the corresponding family of nonagrids simply by G9[ y ] .  

The reflection, s, of a vector in E2 with respect to the real axis is equivalent to 
taking the complex conjugate of the corresponding complex number. Therefore, the 
three cosets, C3 , 5 C 3 ,  and 5*C3 are transformed by s to C3, 5*C3 and 5 C 3 ,  respectively. 
Since the values of the three invariants are common in G9[ y ] ,  we obtain sG9[ y ]  = G,[ y ] .  
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Thus the QPT obtained from nonagrids in G9[ y ]  have a macroscopic point symmetry 
represented by D9 (=C9+ sC9). 

Since the grid vectors are inverted by r2 ,  the rotation by .rr(=18Oo), we obtain 
r2G9[ y ]  = G9[ - y ] ;  that is, G9[ y ]  and G9[ - y ]  are related rotationally to each other. 
Therefore, we can restrict our consideration to the case where 0 s y s i. Moreover, 
we find that r2G9[0]  = G9[O] and r,G,[;] = G9[i]; the latter is true because y is deter- 
mined modulo Z. Thus, we can conclude that QFT obtained from GJO] and G,[+] 
have a macroscopic point symmetry represented by DI8 (=D9+ r2D9). 

Note that most of QFT with a nonagonal macroscopic point symmetry do not have 
any centre with an exact nonagonal symmetry; by a nonagonal macroscopic symmetry, 
we mean only that a QFT with this symmetry belongs to the same translational LI class 
as that of its rotated version by 2 ~ 1 9 .  A nonagonal QPT obtained from any nonagrid 
in G9[ y ]  has, however, an infinite number of vertices with a local nonagonal symmetry 
with a finite density. 

5. Nonagonal and 18-gonal QFT 

A nonagrid can be divided, naturally, into three trigrids corresponding to the three 
cosets, C3, gC3 and g2C3. Trigrids associated with C 3  are classified into families as 
G3[ y ]  with y = yo+ y3+ y6 (0  s y s 4). We show in figure 1 trigrids with y being equal 
to 0, f and 4. Trigrids in G 3 [ 0 ]  are triangular grids and those in G3[ f ]  are Kagomi 
grids. These grids have a point symmetry of D 6 .  On the other hand, trigrids in G3[ y ]  
with 0 < y < have a trigonal symmetry only. Note that triangular grids in G3[0] are 
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singular; every crossing point of a triangular grid is a triple crossing point of three 
grid lines. 

A nonagrid in G9[ y] is a superposition of three trigrids which belong to GJ y], 
r9G3[ y] and riG3[ y]. In particular, a nonagrid in G9[O] is a triple triangular grid and 
the one in GJf] a triple Kagom6 grid. 

We can take a QW with an exact nonagonal or 18-gonal point symmetry as a 
representative of each L I  class of nonagonal QPT. A nonagrid in G,[y], O S  y Si, has 
an exact nonagonal symmetry if all the grid parameters y, are equal. We can assume 
without loss of generality that 0 s  y, S i  for all i. From this assumption and the 
relationship 37, ( = y o +  y3+ y 6 ) =  y modulo 2, we obtain yI = y / 3  or ( y +  1)/3 with 
i = 0-8. Note, however, that the nonagrid with yI = 0, i = 0-8, is the most singular grid, 
in which nine grid lines intersect at the origin; a singular grid gives rise to a spontaneous 
symmetry breaking in the corresponding QPT (de Bruijn 1981). Therefore, an L I  class 
of QW obtained from nonagrids in G,[y] includes two QW with an exact nonagonal 
symmetry if 0 < y s 4 but only one if y = 0. 

We show in figure 2 the nonagonal QPT obtained from a nonagrid with y, =$, 
i =0-8, which belongs to G,[f], and in figure 3(a, b) the 18-gonal QPT obtained from 
those with y, = i, i = 0-8, and y, = 4, i = 0-8, both of which belong to G,[;]. The exact 
point symmetry of the QFT in figure 2 or figure 3(a)  is D9 but that in figure 3(b)  is 
D,8. Note, however, that the macroscopic point symmetry of the QW in figure 3 ( a )  
is Dls ,  though we cannot observe it in the figure because only a small portion of the 
QFT is shown. Note also that any 18-gonal QFT obtained from a nonagrid in G,[i] has 
vertices with a local 18-gonal symmetry (as that in figure 3(b))  with a finite density, 
while that from a nonagrid in G,[O] has no such vertex. The basic tiles of these tilings 
are TI,  T,, T3 and T4, whose acute inner angles are 20", 40", 60" and 80" respectively. 

Figure 2. A nonagonal QPT obtained from a nonagrid with grid parameters yo = y ,  = . . . = 
- ?  x - 9' 

There is a complication in constructing a QPT from a nonagrid in G,[O] because, 
as well as being a trigrid in G3[0], it is also a singular grid. One way of treating this 
is to consider a nonagrid in G,[O] to be a limiting grid of a regular grid in G,[y] in 
the limit y + +O. Then, a triple crossing point in a nonagrid in G,[+O] turns, in the 
dual lattice, to a triplet of three T3, which form a regular hexagon, TH . Unfortunately, 
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Figure 3. Two 18-gonal QPT obtained from triple Kagome grids. The grid parameters 
( a )  y o =  y, = , . . = ys =i and ( b )  yo = y, = . . . = ys = f .  

the point symmetry of the resulting tiling is D9 but not D,8 because r2Gg[+O] 
(=G,[-O]) # G,[+O]. We can change this nonagonal tiling into an 18-gonal one by 
substituting the hexagonal tile, TH, for each triplet of T3.  We show in figure 4 a QPT 
obtained in this way from a nonagrid with y, = f ,  i = 0-8. The resulting tiling is 
composed of tiles of type T, , T 2 ,  T4 and TH . The exact point symmetry of this QPT 
is D9 but its macroscopic point symmetry is DIE.  Note that each hexagonal tile is the 
dual counterpart of a triple crossing point of the singular nonagrid. A hexagonal tile 
can take one of the three orientations corresponding to the three triangular grids 
forming the nonagrid. 

The tiling with the hexagonal tiles is obtained, alternatively, with the projection 
method from a six-dimensional hyperhoneycomb lattice, which is the direct product 
of three identical honeycomb lattices (cf Niizeki 1988). 

In summary, non-crystallographic QPT obtained from nonagrids contain two discrete 
LI classes with point symmetry DI8 and one continuous series of LI classes with point 
symmetry D9. 
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Figure 4. An 18-gonal QPT obtained from a triple triangular grid with yo = y ,  = , . , = y 8 - 3 .  - 

6. Classifications of QPT obtained from general n grids 

6.1. The case of a general odd-n grid 

We begin by noting that the unimodular representation of r, formed by the 1 invariants 
is given by the set of equations 

I 
i = 1,2, . . . , 1 - 1 (3) r,y = 1 ciy(i-l)  r ,y(i)  = y ( i - l )  

i = l  

where the first equality follows from the equality 
I 1 c,x'P,(x)-P,(x)= P,(x)Q,(x)=Omodx"-l .  

i = l  
(4) 

Thus, Q,(x)  is just the characteristic polynomial of the matrix representing r,. This 
matrix is a reducible unimodular matrix unless n is a prime number because Q,(x) is 
factorised. Since 1 is a root of Q,(x), the representation contains the identity representa- 
tion, in which r, is represented by 1. The one-dimensional space forming this identity 
representation is composed of 1-dimensional vectors of the form (7, y, . . . , y )  with y 
being any number. 

It is now evident that the condition for G,[ y ,  y' ,  . . . , - y ( ' - l ) ]  to be invariant against 
r, is given by y = y' = . . . = y( ' - ' ) .  Thus, an LI class of n-gonal QW obtained from n 
grids is specified by a single parameter, y, representing the common value of the 1 
invariants. We denote by G,[ y ]  the family of all such n grids. The QW obtained from 
an n grid which does not belong to G,[y] for any y has a lower symmetry than the 
n-gonal point symmetry and we have no interest in it. 

It is a general property of the n-cyclotonic polynomial that P,(x-') = x-"P,(x). 
From this we can show easily that sG,,[y] = G,[y] with s being the reflection with 
respect to the real axis. Moreover, we can show that r2G2[ y ]  = G,[-y]. Thus, we can 
conclude as in $ 4  that two LI classes of QW with point symmetry D,, are obtained 
from n grids in G,[O] and G,[i] and one continuous series of LI classes of QW with 
point symmetry D, from G,[ y ]  with 0 < y < 4. A QW obtained from an n grid in G,[$] 
has a vertex with a 2n-gonal local point symmetry, while any QW obtained from an n 
grid in G,[y] with arbitrary y has a vertex with an n-gonal one. 
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The most important case is the one where n = 5 .  Then, we should call the LI class 
of decagonal QW obtained from pentagrids in G5[0] the Penrose class since this class 
is identical to that obtained by Penrose (de Bruijn 1981). The second LI class of 
decagonal QW associated with the family of pentagrids, G&], can be called the 
anti-Penrose class. A QW in this class contains a vertex with the decagonal local point 
symmetry but one in the Penrose class does not. We obtain also one continuous series 
of LI classes of pentagonal QFT from pentagrids in G,[ y ] ,  0 < y < i. We can obtain no 
other QW with lower symmetries from pentagrids contrary to the case of nonagrids. 
These results are in agreement with those by Pavlovitch and Kliman (1987) although 
they did not mention explicitly the symmetries of the LI classes. 

6.2. The case of even-n grids 

In an even-n grid, the grid vectors are represented by complex numbers, 1, f ;  
L 2 , .  . . , 5"-' with 5 = exp( r i / n ) ;  note that 5" = -1 and 12" = 1. These grid vectors form 
a unimodular representation of rZn, the rotation by r / n ,  and the characteristic poly- 
nomial of the representation matrix is given by x " + l  because r,,,e,-, = - e o .  The 
number of linearly independent grid vectors over 2 is given by m = 4(2n) ,  so that the 
degree of degeneracies among them is given by I =  n-m. A basis set of linear 
relationships is given by 5'PZn(5) = 0, i = 0, 1, .  . . , 1 - 1, with PZn(x)  being the 2n- 
cyclotomic polynomial and the corresponding invariants are denoted by y, 
y ' ,  . . . , y"-". 

If n = 2 k ( k 3 2 ) ,  we obtain 1 = O .  Therefore, all the QW obtained from 2k grids 
belong to a single LI class whose point symmetry is D,,. The simplest case is n = 4  
and we obtain a single LI class of octagonal QW from tetragrids. 

We shall now consider the case where n has an odd prime number as its divisor. 
Then, we can write n = qn', where n '  ( n ' >  1) is an odd integer and q = 2k(k > 0). 
Accordingly, we obtain m = qm' with m' = +( n'). Using this together with the equality 
X" + 1 = -[(-xq)"'- 13, we can show that P2"(x) = P,.(-xq) and P2,(x)Qn(x) = X" + 1 
with Q,,(X) = -Qn.(-xq), where P,. is the n'-cyclotomic polynomial and the 
complementary one. If n ' = p ' ( j Z  l) ,  we obtain Q , ( x ) = x ' + l .  

Using the results above and making similar arguments to those in §§ 2, 3 and 6.1, 
we can show that Q,,(x) is the characteristic polynomial of the matrix representing r,, 
in the unimodular representation formed by the 1 invariants y, y ' ,  . . . , y"-" and that 
the matrix elements are given in terms of the coefficients of Q,,(x). In the special case 
where n '  = p', we obtain r2,,y = - y"-" and r2,,y(') = y( ' - ' ) ,  i = 1,2, . . . , 1 - 1. Therefore, 
the unimodular representation does not contain the identity representation, in which 
y = y' = . . . = y"-" # 0. This conclusion remains true for a general n because Qn( 1) = 
-0,J-l) f 0, i.e. 1 is not an eigenvalue of the unimodular matrix. Thus, G,[y] ,  the 
family of n grids whose invariants take a common value y is not invariant against r,,,, 
in general. However, G,[O], which is associated with the null representation, is 
exceptional. There is another exceptional family, i.e. G,[f] .  This is true in the case, 
n' = p', because - f = f mod 2 and the invariants are determined modulo 2. We can 
also prove it for a general n, as given in appendix 2 .  

By a similar argument to that in 06.1 we can show that sG,[O]=G,[O] and 
sG,,[f] = G,[$] with s being the reflection. Thus, these two families yield two LI  classes 
of QPT with point symmetry DZn ; one is the 'Penrose class' associated with G,[O] and 
the other the 'anti-Penrose class' associated with G,[$]. A QPT belonging to the former 
does not contain a vertex with a 2n-gonal (nor even n-gonal) local point symmetry 
but one belonging to the latter does. In fact the QW obtained from an n grid with 
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yo = y1 = . . . = yn- ,  = $ has D2, as its exact point symmetry; this n grid belongs to Gn[$] 
by the general property of a cyclotomic polynomial that PZn( 1) = 1 mod 2. 

It can be shown that only one LI class of n-gonal QPT is obtained from even-n 
grids, whereas one continuous series is obtained from odd-n grids. This LI class is, 
however, not important because we can obtain other LI classes of n-gonal QPT with 
much simpler structures from n' grids with n' = n/2 being an integer. 

In the simplest case, i.e. n = 6, we obtain two LI classes of dodecagonal QPT from 
double triangular grids and double KagomC grids. The double triangular grids are 
singular and we obtain dodecagonal tilings containing a hexagonal tile in addition to 
a square tile and a rhombic tile whose acute inner angles are equal to 30" (Niizeki 
1988). Incidentally, we remark that an LI class of hexagonal QPT is obtained from a 
family of hexagrids, each of which is a superposition of a triangular grid and a KagomC 
grid. 

7. Statistics of different kinds of tiles in a QPT obtained from an n grid 

We consider the case of an odd-n grid first. The crossing points between two different 
simple grids in an n grid form a rhombic lattice in two dimensions. The density of 
the lattice points is inversely proportional to the area of the unit cell and, consequently, 
the density of the crossing points between G'," and GY' (j> i )  is proportional to 
[sin [ ( j  - i ) f3] [  with f3 = 27r/n.  Since there are n pairs of simple grids which yield the 
same kind of tiles, the probability, Pk,  of the appearance of Tk in the relevant QPT is 
proportional to sin ( k T / n ) ,  i.e. 

( 5 )  

with (r=2 cos(n/n).  For example, we obtain for n = 5  the known result, PI: P 2 =  
1 : (1 + f i ) / 2 .  It is remarkable that the tile statistics of the QPT obtained from an n 
grid are independent of a particular LI class to which it belongs. 

Equation ( 5 )  applies principally to the case of an even-n grid, too, but note that 
in this case a square tile appears and its statistical weight in ( 5 )  has to be halved 
because there are only n / 2  pairs of simple grids yielding square tiles. Thus we obtain 
P , : P 2 =  1 :  l / f i  for the case of octagonal QPT and P,:P,:P3= 1:fi:l for the 
dodecagonal case. 

The tile statistics of a QPT with hexagonal tiles can be obtained easily from those 
of the corresponding rhombic tiling because the weight of TH is one-third of that of 
the rhombic tile whose acute inner angles are 60". 

The number of the vertices in a tiling with rhombic tiles (more generally, quadri- 
lateral tiles) only is equal to the total number of the tiles; the four inner angles of a 
rhombus total 277 and the inner angles of rhombi joining at a vertex also total 2 ~ .  

Most of the results in this subsection can be extended to QPT obtained from a 
generalised grid, e.g., the double honeycomb grid (Stampfli 1986) and also to the 
icosahedral quasiperiodic 'tiling' in three dimensions (see, e.g., Elser 1986). 

PI : P 2 :  P3:. . . = 1 : a:  (a2- 1) :  a ( & - 2 ) : .  . . 

8. Discussion 

The vertices of a QPT form a quasiperiodic lattice. A QPT and its associated quasiperiodic 
lattice have usually a common point symmetry. For example, we obtain an 18-gonal 
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quasiperiodic lattice from a nonagrid in G9[O] or G9[i]). However, there are exceptional 
cases; the point symmetry of a QPT obtained from a nonagrid in G,[+O] is D9 as noted 
in $ 4  but that of the associated quasiperiodic lattice is Dls. This is because the 
difference between G,[+O] and G9[ -01 is only in the two ways of dividing a hexagonal 
tile, TH, into a triplet of T3.  

A quasiperiodic lattice associated with a QFT obtained from an n grid is also 
obtained with the projection method (see, e.g., Gahler and Rhyner 1986) from an 
n-dimensional simple hypercubic lattice, L,,, which is embedded in E,,,  the n-  
dimensional Euclidean space. The tiling space, E 2 ,  which is a subspace of E,,  is 
spanned by the real and the imaginary parts of the complex vector (1, I, 12, . . . , l"-') 
(Ishihara 1987). The internal space, E,,-2,  is the orthogonal complement of E* in E , .  
A quasiperiodic lattice is obtained by projecting the lattice points in a subset of L, 
onto the tiling space; the projections of the lattice points in the subset onto En-2 are 
required to go to a window which is a finite domain in E, -* .  The quasiperiodic lattice 
associated with a QPT obtained from an n grid is obtained also with the projection 
method when the window coincides with the projection of the unit cell of L, onto 
E,-2 .  We can choose arbitrarily the location of the centre of the window in the internal 
space and this freedom is specified by the position vector of the centre of the window. 
The vector, which is called a phase vector, is closely related to parameters yi in the 
corresponding n grid. 

If the set of the grid vectors has no degeneracies or, equivalently, if n = 2 k (  k 5 2), 
the projections of the lattice points of L, onto En-2 distribute uniformly in the window. 
Otherwise, they distribute only in a number of k-dimensional cross sections of the 
window, where k = n - 2 - 1 (= m - 2) with 1 being the degeneracy among the grid 
vectors. Which cross sections of the window are concerned depends on the phase 
vector and, consequently, on the values of yi. More exactly, the relevant cross sections 
are determined by the values of the 1 invariants. The symmetry of the quasiperiodic 
lattice depends on the symmetries of the cross sections, so that the invariants must 
take special values to obtain a quasiperiodic lattice with a high symmetry. This result 
is well known in the case of n = 5 (Henley 1986, JariC 1986, Pavlovitch and Kliman 
1987). At all events, this presents another explanation of the reason why the invariants 
are of fundamental importance in the classification of the QPT obtained from n grids. 

In conclusion, we have succeeded in a complete classification of QPT obtained from 
n grids. 
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Appendix 1 

The proposition in the text is true if the set obtained from an n grid in 
G , [ y ,  y' ,  . . . , y"-"] by translating it in all possible ways is dense in 
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G,[ y, y ' ,  . . . , y"-"] = T"', the m-dimensional torus. This statement can be proved by 
using the following lemma (theorem 5 in ch 7 of Koksma (1936)). 

Lemma. Let B o ,  e l , .  . . , be real numbers and assume that they are linearly 
independent over 2. Then the image of the following mapping from R into T" is a 
dense set in T m ; t ~ R + ( B o t , B l t  , . . . ,  B,-,t)modZ". 

Our proposition is true from this lemma if we can choose a t = ( t l ,  t , )  E E,  in such a 
way that Bi = ei r, i = 0, 1, . . . , m - 1, satisfy the condition of the lemma. Now, let VI 
(or V,)  be an m-dimensional vector obtained from the first (or the second) components 
of the vectors, e,, e,, . . . , e,,,.-l, and let n E 2" -{O}, i.e. an integer vector. Then n VI 
and n .  V2 do not simultaneously vanish by the assumption that e,, e , ,  . . . , e,,,-l are 
linearly independent over 2, where the dot stands for the Euclidean inner product. 
Accordingly, ( n  V I ,  n V,)  represents a homogeneous coordinate of a point in a 
one-dimensional projective space Pi. Obviously, X = { ( n  0 VI , n - V,)  I n E 2"' - (0)) is 
a countable set of points in P ' .  Let y = ( y , ,  y 2 )  by any point in PI - X( # 4). Then, 
t = ( - y 2 ,  yl) satisfies the requirement mentioned above. 

Appendix 2 

We begin by noting that Q,(-1) = -On,( 1 )  (=O) mod 2, so that Q,( 1 )  = 0 mod 2. There- 
fore, if we consider everything in modulo 2 ,  the I-dimensional vector (1 ,1 , .  . . , 1) is 
an eigenvector of the matrix representing r,, in the I-dimensional unimodular rep- 
resentation. Then, the I-dimensional vector (+, 4, . . . , +) is also its eigenvector if we 
consider it in modulo 2. This completes the proof. 
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